Признаки параллелограмма

Признаки параллелограмма — это признаки, с помощью которых можно доказать, что четырехугольник — параллелограмм.

Чтобы доказать, что четырехугольник — параллелограмм, нужно знать признаки
параллелограмма. Четырехугольник является параллелограммом, если один
из признаков параллелограмма для этого четырехугольника истинен.
Например, если у четырехугольника две стороны равны и
параллельны, значит этот четырехугольник параллелограмм.

Всего существует три признака параллелограмма: по двум одинаковым
параллельным сторонам,
по пересечению диагоналей и делению
диагоналей пополам в точке пересечения, по попарно равным
противоположным сторонам
. В этой статье мы рассмотрим
все три признака параллелограмма.

I признак параллелограмма

По пересечению диагоналей и делению
диагоналей в точке пересечения пополам.

Четырехугольник является параллелограммом, если у четырехугольника
диагонали пересекаются, и в точке пересечения делятся пополам.

Признаки параллелограмма

Если на рисунке 1 — BO = OD, MO = OK, то BMDK — параллелограмм.

II признак параллелограмма

По двум одинаковым параллельным сторонам.

Четырехугольник является параллелограммом, если у четырехугольника
две стороны равны и параллельны.

Признаки параллелограмма

Если на рисунке 2 — BM = DK, BM || DK, то BMDK — параллелограмм.

III признак параллелограмма

По попарно равным противоположным сторонам.

Четырехугольник является параллелограммом, если у
четырехугольника противоположные стороны попарно равны.

Признаки параллелограмма

Если на рисунке 3 — BM = DK, MD = BK, то BMDK — параллелограмм.

В этой статье мы рассмотрели все три признака параллелограмма и
теперь можем доказать, что некий четырехугольник параллелограмм.

Оцените статью
Colibrus
Добавить комментарий

Вставить формулу как
Блок
Строка
Дополнительные настройки
Цвет формулы
Цвет текста
#333333
Используйте LaTeX для набора формулы
Предпросмотр
\({}\)
Формула не набрана
Вставить