Сторона окружности

Определение стороны окружности

Сторона окружности — это длина дуги окружности.

Длина дуги численно равна стороне
окружности, поэтому более распространено
понятие дуги окружности.

Сторона окружности

На рисунке 1, изображена окружность,
обладающая следующими величинами:

  • O — точка, являющаяся
    центром окружности;
  • R — радиус
    окружности;
  • α — центральный
    угол окружности;
  • L — сторона
    окружности;

Длину стороны L, окружности,
с центром в точке O, можно
найти следующим образом:

Ⅰ. Умножить радиус окружности на π,
получившееся разделить на 180 градусов.
Ⅱ. Полученный результат умножить на угол.

Также, все это можно сделать, зная одну из
известных формул стороны окружности:

\[ L = \frac{ \pi R}{180} \cdot \alpha \]

Формулы стороны окружности

Ⅰ. Через диаметр и центральный угол

Сторону окружности L, можно найти, разделив
произведение половины диаметра и π на 180 градусов.
Затем умножить полученное значение на угол.

\[ L = \frac{ \frac{D}{2} \cdot \pi}{180} \cdot a \]

Ⅱ. Через площадь и центральный угол

\[ L = \frac{ \sqrt{\frac{S}{\pi}} \cdot \pi}{180} \cdot \alpha \]

Эта формула, примечательна тем, что
для нахождения длины, не обязательно
знать радиус — главное знать площадь.

Ⅲ. Через периметр и центральный угол

\[ L = \frac{\frac{P}{2\pi}\cdot \pi}{180} \cdot \alpha \]

Самая краткая запись формулы
стороны окружности.

Пример решения задач по теме сторона окружности

Возьмем для удобства π равное 3.14.

Ⅰ.
Дано:
Диаметр равен 6, центральный равен 180.
Найти: Длина стороны окружности — ?

Решение:

\( L = \frac{\frac{6}{180} \cdot \pi}{180} \cdot 180 = \frac{3 \pi}{180} \cdot 180 = 3\pi = 9.42 \)

Ⅱ.
Дано: Периметр равен 100, центральный угол равен 60.
Найти: Длина стороны окружности — ?

Решение:

\( L = \frac{100}{180} \cdot 60 = 0.55 \cdot 60 = 33 \)

Оцените статью
Colibrus
Добавить комментарий

Вставить формулу как
Блок
Строка
Дополнительные настройки
Цвет формулы
Цвет текста
#333333
Предпросмотр
\({}\)
Формула не набрана
Вставить