Равенство окружностей

Первый признак равенства окружностей

По диаметру.

Формулировка первого признака равенства окружностей:

Если диаметр одной окружности равен диаметру другой окружности,
то такие окружности равны.

Доказательство первого признака равенства окружностей:

Равенство окружностей

  1. Рассмотрим окружность с диаметром BA и окружность с диаметром DC, в которых BA = DC. Докажем,
    что окружность с диаметром BA и окружность с диаметром DC равны.
  2. BA = DC, значит окружность с диаметром BA можно наложить на окружность с диаметром DC так, что они совместятся:
    окружность с диаметром BA совместится с окружностью с диаметром DC.
  3. Итак, окружность с диаметром BA и окружность с диаметром DC полностью совместятся, значит они равны — ч.т.д

Второй признак равенства окружностей

По радиусу.

Формулировка второго признака равенства окружностей:

Если радиус одной окружности соответственно равен радиусу другой окружности, то такие окружности равны.

Доказательство второго признака равенства окружностей:

Равенство окружностей

  1. Рассмотрим окружность с радиусом BO и окружность с радиусом DE, в которых BO = DE. Докажем,
    что окружность с радиусом BO и окружность с радиусом DE равны.
  2. BO = DE, значит окружность с радиусом BO можно наложить на окружность с радиусом DE так, что они совместятся:
    окружность с радиусом BO совместится с окружностью с радиусом DE.
  3. Итак,  окружность с радиусом BO и окружность с радиусом DE полностью совместятся, значит они равны — ч.т.д.

Третий признак равенства окружностей

По лучу и углу.

Формулировка третьего признака равенства окружностей:

Если луч делит угол между центрами двух окружностей на два равных угла, то такие окружности равны.

Доказательство третьего признака равенства окружностей:

Равенство окружностей

  1. Рассмотрим луч OD, окружность с центром в точке A и окружность с центром в точке В, отрезки OA и OB, в которых ∠AOD = ∠BOD. Докажем,что окружность с центром в точке A и окружность с центром в точке B равны.
  2. ∠AOD = ∠BOD, значит отрезки OA и OB можно наложить друг на другу так, что они совместятся:
    отрезок OA совместится с отрезком OB.
  3. Итак, окружность с центром в точке A и окружность с центром в точке B полностью совместятся, значит они равны — ч.т.д.

Итог

Равенство окружностей можно доказать с помощью трех признаков:

  1. По диаметру.
  2. По радиусу.
  3. По лучу и углу.
Оцените статью
Colibrus
Добавить комментарий

Вставить формулу как
Блок
Строка
Дополнительные настройки
Цвет формулы
Цвет текста
#333333
Предпросмотр
\({}\)
Формула не набрана
Вставить