Содержание
Первый признак равенства окружностей
По диаметру.
Формулировка первого признака равенства окружностей:
Если диаметр одной окружности равен диаметру другой окружности,
то такие окружности равны.
Доказательство первого признака равенства окружностей:
- Рассмотрим окружность с диаметром BA и окружность с диаметром DC, в которых BA = DC. Докажем,
что окружность с диаметром BA и окружность с диаметром DC равны. - BA = DC, значит окружность с диаметром BA можно наложить на окружность с диаметром DC так, что они совместятся:
окружность с диаметром BA совместится с окружностью с диаметром DC. - Итак, окружность с диаметром BA и окружность с диаметром DC полностью совместятся, значит они равны — ч.т.д
Второй признак равенства окружностей
По радиусу.
Формулировка второго признака равенства окружностей:
Если радиус одной окружности соответственно равен радиусу другой окружности, то такие окружности равны.
Доказательство второго признака равенства окружностей:
- Рассмотрим окружность с радиусом BO и окружность с радиусом DE, в которых BO = DE. Докажем,
что окружность с радиусом BO и окружность с радиусом DE равны. - BO = DE, значит окружность с радиусом BO можно наложить на окружность с радиусом DE так, что они совместятся:
окружность с радиусом BO совместится с окружностью с радиусом DE. - Итак, окружность с радиусом BO и окружность с радиусом DE полностью совместятся, значит они равны — ч.т.д.
Третий признак равенства окружностей
По лучу и углу.
Формулировка третьего признака равенства окружностей:
Если луч делит угол между центрами двух окружностей на два равных угла, то такие окружности равны.
Доказательство третьего признака равенства окружностей:
- Рассмотрим луч OD, окружность с центром в точке A и окружность с центром в точке В, отрезки OA и OB, в которых ∠AOD = ∠BOD. Докажем,что окружность с центром в точке A и окружность с центром в точке B равны.
- ∠AOD = ∠BOD, значит отрезки OA и OB можно наложить друг на другу так, что они совместятся:
отрезок OA совместится с отрезком OB.
- Итак, окружность с центром в точке A и окружность с центром в точке B полностью совместятся, значит они равны — ч.т.д.
Итог
Равенство окружностей можно доказать с помощью трех признаков:
- По диаметру.
- По радиусу.
- По лучу и углу.